a2 United States Patent

US009104427B2

10) Patent No.: US 9,104,427 B2

Heller, Jr. (45) Date of Patent: Aug. 11, 2015
(54) COMPUTING SYSTEM WITH (56) References Cited
TRANSACTIONAL MEMORY USING
MILLICODE ASSISTS U.S. PATENT DOCUMENTS
. . . . 3,686,641 A 8/1972 L. t al.
(71) Applicant: ICnternatlt(?nalKrumnIfl:sli\I/I;E[l}lsn)es 5428761 A 6/1995 Hz%ﬁﬁ;e?al.
orporation, Armonk, .
P (Continued)
(72) Inventor: Thomas J. Heller, Jr., Rhinebeck, NY
(US) FOREIGN PATENT DOCUMENTS
(73) Assignee: Internati({nal Business Machines i{) 200%%%2;}‘ A2 3%882
Corporation, Armonk, NY (US) WO WO2007067390 A2 6/2007
(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
patent is extended or adjusted under 35 Heller, L. C., Farrell, M. S. “Millicode in an IBM zSeries processor”
U.S.C. 154(b) by 388 days. IBM J. Res. & Dev. vol. 48 No. 3/4 May/Jul. 2004.*
(21) Appl. No.: 13/655,636 (Continued)
(22) Filed: Oct. 19, 2012 Primary Examiner — Jacob A Petranek
(74) Attorney, Agemt, or Firm — Cantor Colburn LLP;
(65) Prior Publication Data Margaret McNamara
US 2013/0042094 A1 Feb. 14,2013 (57) ABSTRACT
A computing system processes memory transactions for par-
Related U.S. Application Data allel processing of multiple threads of execution with milli-
(60) Division of application No. 11/928,533, filed on Oct code assists. The computing .system trar}sactlonal memory
30, 2007 pph. b ' i ’ i > art f support provides a Transaction Table in memory and a
’ licati ’ NW llc 1 /7‘:; OZ 4 cﬁoln (;nua ﬁn'ml'}: 2 00% method of fast detection of potential conflicts between mul-
app 1Ic)at10§ g '3 21.63 7’ » et on May 15, ’ tiple transactions. Special instructions may mark the bound-
now rat. . 8,528,057 aries of a transaction and identify memory locations appli-
cable to a transaction. A ‘private to transaction’ (PTRAN) tag,
(51) Int.CL P S
GOG6F 9/46 (2006.01) direc.tly addressable as part of the main data storage memory
GO6F 9/38 (2006.01) location, enables a quick detection of potential conflicts with
. ’ other transactions that are concurrently executing on another
(Continued) thread of said computing system. The tag indicates whether
(52) US.CL (or not) a data entry in memory is part of a speculative
CPC o GOG6F 9/3885 (2013.01); GO6F 9/3004 memory state of an uncommitted transaction that is currently
(2013.01); GOSF 9/3017 (2013.01); active in the system. Program millicode provides transac-
(Continued) tional memory functions including creating and updating
transaction tables, committing transactions and controlling
(58) Field of Classification Search the rollback of transactions which fail.
CPC ettt GOG6F 9/467

See application file for complete search history.

11 Claims, 10 Drawing Sheets

900+
MULTITHREADED MICROPROCESSOR WITH MILLICODE
990~ INSTRUCTION
EXECUTION
PIPELINES
910 920 o
LOAD/STORE] [LOAD/STORE] | , . '/l
UNIT A UNIT B 921~ MILLIC(ODE)MODE
917
930 940~ N
' AIG_MODE
950
~J ADDRESS HISTORY TABLE (AHT) l‘—[gao (918)
; o
MILLICODE ASSIST MILLICODE REGISTERS GENERAL
SETUP LOGIC (916) (917) PURPOSE
915 REGISTERS

US 9,104,427 B2

Page 2
(51) Int.ClL 2005/0086446 Al 4/2005 McKenney et al.
GO6F 9/30 (2006.01) 2005/0097296 Al 5/2005 Chamberlain et al.
GO6F 11/14 2006.01 2005/0131947 Al 6/2005 Laub et al.
(2006.01) 2005/0138298 Al 6/2005 Downer
(52) US.CL 2005/0216625 Al 9/2005 Sm_ith et al.
CPC GO6F9/30087 (2013.01); GOGF 9/3834 %882;882225? ﬁ} 3%882 anvar et all'
(2013.01); GOGF 9/3842 (2013.01); GO6F 0e0iaaass Al 85000 Noharetal
9/3851 (2013.01); GO6F 9/466 (2013.01); 2006/0200632 Al 9/2006 Tremblay et al.
GOG6F 9/467 (2013.01); GOGF 11/1405 2006/0206692 Al 9/2006 Jensen
(2013.01); GO6F 11/1474 (2013.01) 2006/0212456 Al 9/2006 Earhart
2006/0282476 Al 12/2006 Dolby et al.
. 2006/0288173 Al 12/2006 Shen
(56) References Cited 2006/0294326 Al 12/2006 Jacobson et al.
2007/0028056 Al 2/2007 Harris
U.S. PATENT DOCUMENTS 2007/0028058 Al 2/2007 Bradley et al.
2007/0186056 Al 8/2007 Saha et al.
3438701 A 81995 Krumszyn et al. 2007/0186215 Al* 82007 Rajwaretal. o 718/102
3,553,291 A 971996 Tanaka et al, 2007/0239942 Al 10/2007 Rajwar etal.
3701432 A 12/1997 Wong etal. 2007/0282838 Al* 12/2007 Shavit etal. ... 707/8
3,742,785 A 471998 Stone et al. 2007/0300238 Al 12/2007 Kontothanassis et al.
2046711 A 8/1999 Donnelly 2008/0022054 Al 1/2008 Hertzberg et al.
3.963.922 A 10/1999 Helmering 2008/0065864 Al 3/2008 Akkary et al.
5,074,438 A 1071999 Neufeld 2008/0098181 Al 4/2008 Moir étal.
6,035,379 A~ 372000 Raju ct al. 2008/0288238 Al 11/2008 Heller, Jr.
6,052,605 A~ 4/2000 Abeetal 2008/0288727 Al 11/2008 Baum et al.
6,067,617 A * 52000 Webb etal.c..oe. 712/245 2008/0288730 Al 11/2008 Heller, Jr. et al.
6.078.999 A~ 672000 Raju ctal. 2008/0288819 Al 11/2008 Heller, Jr.
6,108,776 A * 82000 Checketal.cc..... 712/240 3009/0172292 Al 7/2009 Sahaetal.
6,360,220 Bl 3/2002 Forin 2011/0055483 Al 3/2011 Heller, Jr.
6,360,231 Bl 32002 Pong ct al. 2013/0046937 Al 2/2013 Heller, Ir.
6,381,676 B2 4/2002 Aglietti et al. ’
6,510,498 Bl 1/2003 Holzie et al. OTHER PUBLICATIONS
6,611,906 Bl 8/2003 McAllister et al.
6,651,146 B1 11/2003 Srinivas et al. McDonald, Austen et al. “Architectural Semantics for Practical
6,738,837 Bl 5/2004 Wyland Transactional Memory” International Symposium on Computer
6,748,505 Bl 6/2004 Dakhil Architecture. 2006.%
6,826,757 B2 11/2004 Steele, Jr. et al. N T) . i
6.862.664 B2 3/2005 Tremblay et al. Moore, Kevin E. et al_. LogTM: Lo_g-based T_ransactlonal Memory
6.874.065 Bl 3/2005 Pong et al. 12th Annufll International Symposu.lm on High Performanci Com-
6,880,045 B2 4/2005 Pong etal. puter Architecture .(HII’CA-IZ) Austin, TX Feb. 11-15, 2006. .
6,880,071 B2 4/2005 Steele, Jr. et al. USPTO Communication, U.S. Appl. No. 11/928,857—Notice of
6,938,130 B2 8/2005 Jacobson et al. Allowance, Date mailed: Oct. 24, 2013, 22 pages.
6,981,110 B1 12/2005 Melvin Annanian; “Unbound Transactional Memory”; Dec. 31, 2005; IEEE;
7,000,234 Bl 2/2006 Shavit et al. 11th International Symposium on HPCA; 12 pages.
7,017,160 B2 3/2006 Martin et al. U.S.PT.O. Communication, Final Rejection for U.S. Appl. No.
7,039,794 B2 5/2006 Rodgers et al. 11/928.533 dated Oct. 22. 2012.
7,089,374 B2 8/2006 Tremblay et al. . C : o
7107.402 B /2006 Melvin U.S.PT.O. Communication, Final Rejection for U.S. Appl. No.
. 11/928,857 dated Aug. 3, 2012.
7,117,502 B1 10/2006 Harris > . L
7:350.034 B2 3/2008 Shen U.S.PT.O. Communication, Final Rejection for U.S. Appl. No.
7421,544 BL* 9/2008 Wright et al. 711/150 12/550.844 dated Dec. 26,2012, o
7,536,517 B2 5/2009 Harris U.S.PT.O. Communication, Non-Final Rejection for U.S. Appl. No.
7,689,788 B2 3/2010 Moiretal. 11/928,533 dated May 9, 2012.
7,730,286 B2 6/2010 Petersen et al. U.S.PT.O. Communication, Non-Final Rejection for U.S. Appl. No.
7,865,701 Bl 1/2011 Tene et al. 11/928,857 dated Dec. 27, 2011.
8,095,741 B2 1/2012 Heller, Ir. et al. U.S.P.T.O. Communication, Non-Final Rejection for U.S. Appl. No.
8,095,750 B2 1/2012 Heller, JIr. 13/656,778 dated Feb. 22, 2013.
g’ég’ggg g% liggﬁ geller, -Ir' let al. U.S.P.T.O. Communication, Notice of Allowance for U.S. Appl. No.
i aum et al. 11/748,044 mailed Jul. 19, 2012.
2002/0072071 Al 6/2002 Kientsch-Engel et al. o7 nAred A 17 S0
U.S.PT.O. Communication, Notice of Allowance for U.S. Appl. No.
2002/0073071 Al 6/2002 Pong et al. .
11/928,758 mailed Jun. 30, 2011.
2002/0078308 Al 6/2002 Altman et al. Pt . i th £) frware: i
2002/0103804 Al 8/2002 Rothschild et al. Programming in the Age of Concurrency: Software: Software
2002/0143847 Al 10/2002 Smith Transactional Memory”, Sep. 1, 2006, http://channel9.msdn.com/
2002/0161815 Al 10/2002 Bischof et al. Showpost.aspx?postid=231495; pp. 1-7.
2002/0199069 Al 12/2002 Joseph Rajwar et al.; “Speculative Lock Elision: Enabling Highly Concur-
2003/0066056 Al 4/2003 Petersen et al. rent Multithreaded Execution”; 2001; IEEE; pp. 294-305.
2003/0079094 Al 4/2003 Rajwar et al. Rajwar et al.; “Virtualizing Transactional Memory”; Proceedings of
2003/0084038 Al 5/2003 Balogh et al. 32nd International Symposium on Computer Architecture; IEEE;
2003/0204682 Al 10/2003 UeI_lO Jun. 4-8, 2005; 12 pages.
%883;88;22;‘% ﬁ} égggj ﬁo;r et ai' Roetter, Alex; “Writing Multithreaded JAVA Applications”; Feb. 1,
our et al. 2001; pp. 1-7; retrieved from the internet Feb. 1, 2001; http://www-
2004/0152948 Al 8/2004 Kim
128.ibm.com/developworks/java/library/j-thread.html.
2004/0162948 Al 8/2004 Tremblay et al. 2 . L .
2004/0187115 Al 9/2004 Tremblay et al. U.S.PT.O. Communication, Requirement for Restriction/Election
2004/0187116 A1 9/2004 Tremblay et al. for U.S. Appl. No. 11/928,533 dated Jun. 28, 2010 . _
2004/0187127 Al 9/2004 Gondi et al. Saha et al. “Architectural Support for Software Transactional
2004/0267828 Al 12/2004 Zwilling et al. Memory”; 39th Annual IEEE/ACM International Symposium on
2005/0060559 Al 3/2005 McKenney Microarchitecture; Dec. 9, 2006; Dec. 13, 2006; pp. 1-12.

US 9,104,427 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

Saha et al. McRT-STM—A High Performance Software Transac-
tional Memory System for a Multi-Core Runitime; PPoPP’06; ACM;
Mar. 29-31, 2006; pp. 187-197.

Shavit et al.; “Software Transactional Memory”, Annual ACM Sym-
posium on Principles of Distributed Computing, Proceedings of
Fourteenth Annual ACM Symposium on Principles of Distributed
Computing, ACM; 1995; pp. 0-33.

Subject Matter Eligibility Test (M-OR-T) for Process Claims;
USPTO; pp. 1/1; Aug. 2009.

Shriraman et al.; “Hardware Acceleration of Software Transactional
Memory”; May 18, 2006; pp. 1-10.

Soltis; “Inside the AS/400”; 2nd Edition; Duke Press; 1997; pp. 1-6.
“THREAD: (Computer Science)” Wikipedia; htt://en. wikipedia.org/
wiki/Thread_ (computer_science); Feb. 2, 2007; pp. 1-7.

“Tuple Space”; http://c2.com/cgi/wiki?TupleSpace; Sep. 20, 2006,
pp. 1-5.

Wilson et al.; The Case for Compressed Caching in Virtual Memory
Systems; Proceedings of the 1999 USENIX Annual Technical Con-
ference; 1999; pp. 1-16.

Wheeler “Secure Programmer: Prevent Race Conditions”; http://
www-128.ibm.com/developerworks.linux/library/ 1 -sprace.html;
Oct. 7, 2004; pp. 1-10.

Wood; “Transactional Memory—An Overview of Hardware Alter-
natives”; Transactional Memory Workshop; Apr. 8, 2005; pp. 1-22.
Yen et al.; LogTM-SE Decoupling Hardware Transactional Memory
from Caches; Feb. 10-14, 2007; 13th Annual International Sympo-
sium on High Performance Computer Architecture; 12 pages.
Hennessy et al; Advantage Set Associativity; “Computer Architec-
ture: a Quantitative Approach”, 3rd Edition; pp. 429; 2006.
Ananian et al; “Unbound Transactional Memory”; Research
Abstracts 2006; CSAIL Publications and Digital Archive; pp. 1-4.
Banatre et al.; “Cache Management in a Tightly Coupled Fault Tol-
erant Multiprocessor”; IEEE; 1990; pp. 1-8.

Chang et al.; “801 Storage: Architecture and Programming”; Journal
ACM Transactions on Computer Systems (TOCS); vol. 6, Issue 1;
Feb., 1988; pp. 28-50.

Chung et al.; “Tradeoffs in Transactional Memory Virtualization”;
ASPLOS ’06; Oct. 21-25, 2006; pp. 1-12.

Damron et al.; “Hybrid Transactional Memory”; ASPLOS *06; Sun
Microsystems, Inc.; Oct. 21-25, 2006.

Dice et al., “Transactional Locking II””; 2006; pp. 1-15.

Howe, Denis; “Definition of Set Associative Cache”; FOLDOC .org;
Oct. 18, 2004; pp. /1.

Howe, Denis; “Definition of Virtual Memory”; FOLDOC.org; Nov.
26, 2002; pp. /1.

Grinberg et al.; “Investigation of Transactional Memory Using
FPGASs”; School of Electrical Engineering; Tel Aviv University; Tel
Aviv, Israel; Feb. 2006; pp. 1-4.

U.S.PT.O. Communication, Final Rejection for U.S. Appl. No.
11/748,044 dated Nov. 10, 2009.

U.S.PT.O. Communication, Final Rejection for U.S. Appl. No.
11/928.533 dated Apr. 8, 2011.

U.S.PT.O. Communication, Final Rjection for U.S. Appl. No.
11/928,594 dated Jul. 9, 2010.

U.S.PT.O. Communication, Final Rejection for U.S. Appl. No.
11/928,661 dated Aug. 27, 2010.

U.S.PT.O. Communication, Final Rejection for U.S. Appl. No.
11/928,758 dated Jul. 9, 2010.

U.S.PT.O. Communication, Final Rejection for U.S. Appl. No.
11/928,857 dated Jun. 8, 2011.

Hammond et al.; “Transactional Memory Coherence and Consis-
tency”; Stanford University; 2004; pp. 1-12.

Hapner et al.; “Java Message Service”, Version 1.1, Sun
Microsystems; Apr. 12, 2002.

Harris et al.; “Language Support for Lightweight Transactions”,
ACM SIGPLAN Notices, vol. 38, No. 11, ACM; Nov. 2003; pp. 1-15.
Harris et al.; “Transactional Memory with Data Invariants”; 2006; pp.
1-12.

Heller, L. C. et al.; “Millicode in an IBM zSeries Processor”; IBM
Journal of Research and Development, vol. 48, No. 3/4, May/Jul.
2004; pp. 425-434.

Herlihy; “What Can We Prove About Transactional Memory?” Aug.
21-22, 2006; Brown University; pp. 1-67.

Herlihy et al.; “Transactional Memory: Architectural Support for
Lock-Free Data Structures”; IEEE; 1993; pp. 289-300.

Java.lang Class Thread; Sun Microsystems; Apr. 5, 2003; retrieved
from the internet Apr. 2, 2010; <http://web.archive.org/web/
20040207 134551/http://java.sun.com/j2se/1.5.0/docs/api/java/
lang>; pp. 1-28.

Katz et al.; “Implementing a Cache Consistency Protocol, Research
Paper”; Electrical Engineering and Computer Science Department;
University of California Berkeley; Oct., 1984; pp. 1-31.

Kerns, Tamra; “The Advantages of Multithreaded Applications”;
copyright 1998.

Kongetira et al.; “Niagara: A 32-Way Multithreaded Sparc Proces-
sor”; IEEE; 2005; pp. 21-29.

Kuszmaul et al.; “Transactions Everywhere” http://www.cs.wfsc.
edu/-rajwar/tm-workshop/position__statements; htm pp. 1-19; 2003.
Lee, “The Problem with Threads”, Innovative Technology for Com-
puting Professionals, May 2006; pp. 1-19.

MATE: Micro Assist Thread Engine; IPCOMO000027405D; IBM;
Apr. 7, 2004.

McDonald et al.; “Architectural Semantics for Practical Transac-
tional Memory”; Proceedings of the 33rd International Symposium
on Computer Architecture; IEEE; Jun. 17-21, 2006; pp. 1-12.
Moore, K.E., et al.; LogTM: Log-based Transactional Memory. Pro-
ceedings of the 12th Annual International Symposium on High Per-
formance Computer Architecture (HPCA-12); IEEE; Feb. 11-15,
2006.

Mohamed; “The Posix Interface for the Unicon Programming Lan-
guage”; 1997, http://www.drones.com/unicon; pp. 1-21.
“Multithreaded Programming Guide Products and Services”; Nov. 2,
2010, http://docsun.cites,uiuc.edw/sun__docs/C/solaris_ 9/
SUNWdev/MTP/p56.html; pp. 1-4.

“Multithreaded Programming Guide”; 2008; http://docs.sun.com/
app.docs/doc/806-6867/6jfpgdcop? 1=sv&a=view; pp. 1-13; Sun
Microsystems Inc.; 1994.

“Native POSIX Thread Library”, http://en.wikipedia.org/wiki/Na-
tive_ POSIX_ Thread_ Library; 2010; pp. 1-3.

U.S.PT.O. Communication, Notice of Allowance for U.S. Appl. No.
11/928,661 mailed May 18, 2011.

U.S.PT.O. Communication, Non-Final Rejection for U.S. Appl. No.
11/748,044 dated Apr. 13, 2011.

U.S.PT.O. Communication, Non-Final Rejection for U.S. Appl. No.
11/748,044 dated Apr. 14, 2009.

U.S.PT.O. Communication, Non-Final Rejection for U.S. Appl. No.
11/928,661 dated Apr. 2, 2010.

U.S.PT.O. Communication, Non-Final Rejection for U.S. Appl. No.
11/928,758 dated Apr. 16, 2010.

U.S.PT.O. Communication, Non-Final Rejection for U.S. Appl. No.
11/928,857 dated Nov. 26, 2010.

U.S.PT.O. Communication, Non-Final Rejection for U.S. Appl. No.
11/928.533 dated Oct. 29, 2010.

U.S.PT.O. Communication, Non-Final Rejection for U.S. Appl. No.
11/928,594 dated Mar. 8, 2010.

U.S.PT.O. Communication, Notice of Allowance for U.S. Appl. No.
11/928,594 mailed May 25, 2011.
PCT/EP2010/062302—International Search Report dated Nov. 22,
2010.

PCT/EP2010/062302—Written Opinion dated Nov. 22, 2010.

* cited by examiner

U.S. Patent

100~ cpy L

Aug. 11, 2015

Sheet 1 of 10

110
f

vvy

INTERCONNECT

)

A

US 9,104,427 B2

PHYSICAL MEMORY

DATA

PTRAN

120" |

121

122

US 9,104,427 B2

Sheet 2 of 10

Aug. 11, 2015

U.S. Patent

¢ 9l
e | Bt | oWt
VIVd VIV
MIN | 0N ~—icz | MIN | OdNI ~_(c7
40 (10 | Nl |SS3uaav 40 {10 | NYI |SS3yaay

g 318vL NOILOVSNvYL

V 318V1 NOILOVSNVAL

g I QvigHL

~~¢le

d AJIN3 IXAON

~~¢lC

g NIOI40 F18vL

~~11¢

AJOWAN WALSAS VI Howm

V Al QV3HL

~~-¢0¢

V AdINT DXAN

™~-¢0¢

Y NRIMO F18vL

™~ 10¢

SYALSIOFY ALVIS AV

US 9,104,427 B2

Sheet 3 of 10

Aug. 11, 2015

U.S. Patent

|

avo1 4141dW0J
d4dvHS SV MoV
418v1L Nvdl 0L day

ommR

09¢"1

STIV4 NOILOVSNVYL

omm\\

2
SOV
INOAY dIMOTIV
ONIIVHS

0L¢

é
dnoyd SIHL

avo1 341d0D

0¥e-—"]

18v1L NOILOVSNvdL OL aav
| = Nvdld 13S

INISS300dd

oz L_TVNON

40 1dvd AQV3dTY

>3A SSIMAAY

14VHOMO 14 ONISS300dd VOl

US 9,104,427 B2

Sheet 4 of 10

Aug. 11, 2015

U.S. Patent

3HOLS 553008d
CINE N9l 31vddnN |

mﬁw\

¥ old

"

STivd NOLLOWSNYL

AHONIN OL ¥IV0 3AILVIND3dS OIS
J1gvL OL AMOWIN WO¥Z vYivd J70 AdCD
J18v1 NOUOVSNYYL Ol S3RINT aav

L = Nvdld 135

osr

INISSIO0N
TYNNON

1YYHIMOS INISSA00dd 3H0IS

US 9,104,427 B2

Sheet 5 of 10

Aug. 11, 2015

U.S. Patent

G I

EIERl4100)
NOILOVSNVHL

AJONIN NI L1 Nvdld 14S3d
AdINT 318VL NOILOVSNVYL IXIN Av3Y

omm\

AJONIN NI LIg NVH1d 1353

AdINT J18VL NOILOVSNVYL 1Sdld dviy

400N 9V
NI 3NNIINOD

ommR

S3A

¢
dNoyod
NI NOILONHLSNI
1SV1

00S

L14VHOMO 14 ONISS300dd LINWOD

/foﬁm

US 9,104,427 B2

Sheet 6 of 10

Aug. 11, 2015

U.S. Patent

3141dW03D
MNOVETION

AYONIN NI 118 Nvdld 13S3d
> AJOWAW OL VIVAQ d70 JLRM NIHL AYINT IdAL FHOLS 4
A4IN3 F18VL NOILOVSNVYL IX3IN av3d

omm\

v OV ON3

¢V NOILONYLSNI
g oIV (N3

18 NOILONYLSNI
08 NOILINYLSNI
8 OV NI93d
IV NOILONYLSNI
OV NOILONYLSNI
Y OV NI93g

AV (41S3N

AHOWIN NI LIE NvYld 13S3d

AJONAN 0L VIVA 10 JLR-AM N3HL AYINT 3dAL 340I1S 4
A4INT F18VL NOILOVSNVYHL 1Syl4 avay

JA0W OV
NI 3NNILNOD

om@R

S3A

2
JANTIv4
NOILOVSNVYL

009

JAVHIMO1 ONISSIO04d HovETIOY

/o_@

U.S. Patent Aug. 11, 2015

800
r

Sheet 7 of 10

DECODE NEXT INSTRUCTION

805 S—81O

NO [NORMAL

EXECUTION

YES

PROCESSOR ENTERS MILLICODE MODE
PROCESSOR ENTERS AIG MODE

EXIT MILLICODE MODE

MILLICODE CREATES REQUIRED TRANSACTION TABLES

| 815

+—__1

DECODE NEXT INSTRUCTION
820

830

825 L0AD OR

STORE
?

EXECUTION

ENTER MILLICODE SUBSET MODE
PROCESS AIG LOADS (FIGURE 3)

PROCESS AIG STORES (FIGURE 4)
EXIT MILLICODE SUBSET MODE

/835

ENTER MILLICODE MODE
HANDLE NESTED AIG
EXIT MILLICODE MODE

Lg40
830 e 855 (AST
FAILURE NO _ > INSTRUCTION
?

860
1

HANDLE FAILURE

IN AIG

POSSIBLE ROLLBACK

ENTER MILLICODE MODE

COMMIT AIG

US 9,104,427 B2

EXIT AIG MODE
EXIT MILLICODE MODE

US 9,104,427 B2

Sheet 8 of 10

Aug. 11, 2015

U.S. Patent

6914
SENSREN . EN
350d¥nd (16) . _Ll(916) 21907 dni3s
WAINID S¥3LS193Y Q00T 1SISSY Q0TI
| |
0967 1 .
(816) 086" I(lHv) 31avL AYOLSH SS34aQv [oc6
JAON 9V N
0L6
70 0v6 056
JAOW JA0OITIA 126 R R v 1NN
ﬁ\:wmm MoLS/avol| | 3yoLs/avo
J J
SIN3did 0cé 016
NOILND3X3
NOILONYHLSNI - 066

JAOJMIA HLIM HOSS3O0dd0dIIN A3AVAEHLILINW

Loos

U.S. Patent

ADDRESS HISTORY TABLE (AHT)

Aug. 11, 2015

RESPONSE

THREAD D

ADDRESS

ENTRY TYPE ACCESS TYPE

Sheet 9 of 10

Q

US 9,104,427 B2

FIG.10

US 9,104,427 B2

Sheet 10 of 10

Aug. 11, 2015

U.S. Patent

AMINT @3V 3Lv¥INTD//

g AMYANNS 3¥0IS 13S//
AYYWANS 3M01S JHL 13S L,Noa savol//

SIHL 00 0L @3AN SIMOLS ANV Savol HLog//
AMING SIHL 804 F7aVL AMYWANS Mavw//

d31vadn 39 OL J18vl AIVWWNS 3HL 40 Ldvd //
JHL ¥04 SSIMAQAY LVINOTVO 3SIMYIHIO//

39vd LXAN NO //

10M4NOD JATOSIY NIHL MO LON SI ISNO4SH 21 dI//
SASNOASIY 271 IAVH IVHL SIMINT NO MHOM AINO//

LNN 1S/07 NI ¥344ng I4VMANVH WOMH AMINI ISaN TInd//

(014) OINI ¥4 3MOLS
P4 NI AYINT @3TVIIA 3LYH3INTD
STVIAQ UMM 0L SSI¥Aav=01Y

(9¥) OINI 6Y OIS

MOVE L4IHS

64 NI L9 1034400 3HL JLIMM

64 14IHS

64 OINI (9¥) avOl

AMINT VLA 0L ¥9 (avoT=awo) 4i

(GY) OL MOva 84 OIS
Mova 8¥ LdIHS

8 NI 18 1034400 FHL ILIMM
8y I4IHS

8 OININ (G¥) avo1

MSYW % ¥ G

LOM4ANCD OL ¥8 NIHL 0=i dS3md <1 4

1IX3 N3HL drivA=i AdING 4l
Yd-=4dS JAON

-AdINT 1IVIHd

“IVINHON

M: SSIN TIIM 3d0LS mzow S3YOLS ANV SAVOT IWNOILIdAY ¢ 3SNVO S3H0LS OV =

1T SSIN TIIM F40LS 3INO

SFHOLS ¢ ANV avOl IYNOLLIAay | 3SnvO SavoT Olv =

(HLvd 1Sv4 10M4NOO ON) NOILONNA Qv3dHL 1SISSY 304 3000 0dN3Sd=

US 9,104,427 B2

1
COMPUTING SYSTEM WITH
TRANSACTIONAL MEMORY USING
MILLICODE ASSISTS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a divisional of U.S. patent application
Ser. No. 11/928,533, filed Oct. 30, 2007, which is a continu-
ation in part of U.S. Ser. No. 11/748,044, filed May 14, 2007,
the contents of both are incorporated by reference herein in
their entirety.

BACKGROUND

This invention relates to computer systems, and particu-
larly to a computing system with transactional memory using
millicode assists.

Current multiprocessor and multithreaded computing sys-
tems allow the performance of a single software application
to be scaled to many times the possible performance of a
single threaded application. Current software and hardware
systems provide for the parallel processing of multiple
threads of execution. Software applications can use existing
thread libraries, such as the POSIX pthread library, to control
the creation of multiple threads of parallel execution. The use
of' multiple threads works well for applications that operate on
easily partitioned tasks and data. Course grain locks can be
used to control access to the few shared data structures to
prevent rare conflicts between the data updates of multiple
threads.

Many software applications contain data structures that
must be shared among multiple threads and have frequent
concurrent inspections and updates of the shared data struc-
tures. These applications require additional modifications in
order to obtain good scaling when using large numbers of
threads. Applications which use multiple threads of execution
that access shared data structures currently require the use of
specialized data locking routines in order to produce a reli-
able outcome that is free from deadlocks and corrupted data.
The majority of existing multithreaded applications in this
category use fine grained software locks to achieve good
performance and correct operation. Writing high perfor-
mance multithreaded programs which use fine grained soft-
ware locks is extremely difficult and requires expert program-
ming skills. The lack of these skills in the software industry
severely limits the production of multithreaded applications
which require the use of shared data structures and therefore
the usefulness of multithreaded and multiprocessor comput-
ing systems for certain application classes, including many
forms of transaction processing.

Various “Transactional Memory” systems have been pro-
posed and built to provide a simpler programming model for
constructing multithreaded applications that need to control
access to shared data structures. These systems allow soft-
ware running on one thread of execution to optimistically
assume that shared data structures can be updated without
conflict with the accesses and updates of other threads of
execution. The speculative updates to memory are kept
“pending” until the transactional memory system confirms
that no conflicts with storage accesses of other threads have
occurred. The transactional memory system must be able to
discard the pending speculative updates when conflicts
between the storage accesses of multiple threads are detected.
The existing transactional memory systems range from those
that rely completely on new software constructs to those that
rely on a mixture of hardware and software to obtain reason-

10

15

20

25

30

35

40

45

50

55

60

65

2

able performance. Some existing systems have very high
overhead in terms of the number of instructions executed in
support of the required transactional memory behavior. Other
existing systems have limitations associated with complex
data cache structures that hold the “pending” updates to
memory in caches. The cache based systems use many addi-
tional cache coherency states which causes a large increase in
the design and simulation efforts for those systems.

Recently transactional memory systems have been pro-
posed as illustrated by Microsoft’s U.S. Patent Application
Publication No. U.8.2007/0028056 which use software
“enlistment records” associated with memory locations that
have been accessed by transactions. The Microsoft system
also uses a “version value” in the “enlistment record”. FIG. 3
of Pub. No. 2007/0028056 includes an operation “Locate
enlistment record of memory location”. The text describing
FIG. 3 gives the example of the enlistment record being part
of'a software object at the referenced memory address. From
Pub. No. 2007/0028056 in paragraph 24, it will be seen that
Timothy L. Harris, the Microsoft inventor, indicates that an
enlistment record is created with the use of a “software trans-
actional memory interface”. The Microsoft Pub. No. 2007/
0028056 uses version numbers associated with each enlist-
ment record and needs to deal with cases where the version
number exceeds the maximum number supported by the
enlistment record. In hindsight, after learning of the details of
our invention, it will be recognized that these features of the
recent developments in transaction memory systems are not
needed and can be improved upon.

Earlier, and now long ago, as pointed out in the develop-
ment of fast paced computing systems developments summa-
rized by David A. Wood, University of Wisconsin, Transac-
tional Memory Workshop, April 8, 2005, it was Chang and
Mergen of IBM (described in 801 Storage: Architecture and
Programming) who proposed using a lock bit associated with
each segment of virtual memory. Their system provided an
ability to detect concurrent accesses of storage locations by
multiple threads but restricted the total number of concurrent
threads that could operate on any single virtual memory seg-
ment when the transaction locking mechanism becomes
active. Large virtual memory page tables which are required
by Chang and Mergen to execute concurrent threads imposes
a performance penalty on all threads of execution that use
virtual memory, not just those that execute “transactions, so
the Chang and Mergen suggestions became an anecdote in the
prior art, as Woods said “No one seems to be looking at what
they learned”. The current invention uses a “Transaction
Table” that is distinct from the virtual memory page tables of
the system.

Unknown to Woods, in the Chang and Mergen IBM York-
town facility there have been ongoing laboratory develop-
ments relating to transactional memory systems, culminating
with the most recent transactional memory system described
by Xiaowei Shen U.S. patent application Ser. No. 11/156913,
filed Jun. 20, 2005, and entitled “Architecture Support of
Best-Effort Atomic Transactions for Multiprocessor Sys-
tems”.

Shen describes a transactional memory system which
focuses on using “caches as buffers for data accessed by
atomic transactions”. Xiaowei Shen forces the failure of a
transaction when the system detects a “buffer overflow” and
does not propose dealing with the case of speculative data
being evicted from the cache. A buffer overflow will result if
too many transactional loads or stores target the same cache
congruence class. The percentage of transactions which over-

US 9,104,427 B2

3

flow the cache and fail will be proportional to the number of
loads and stores contained in a transaction. Long transactions
will fail more often.

Other systems have been proposed which use a cache to
implement a conflict detection scheme, and to capture specu-
lative data which overflows the cache. We have found it desir-
able not to rely primarily on data cache states for conflict
detection. The required specialized cache states cause an
undesired increase in complexity and also makes it difficult to
add the required detection and isolation mechanisms to exist-
ing multiprocessor cache coherency designs. Nevertheless
there are numerous attempts to exploit the cache which have
been tried, besides the Xaiowei Shen development, including,
Moore et al who describe the use of a “before-image log” in
their paper “LogTM: Log-based Transactional Memory”.
Moore uses cache coherency states to implement a conflict
detection scheme. Another such system, Ananian et al
describe a transactional memory system which uses a single
“unsorted linear array data structure” to capture speculative
data which overflows data caches. They use an extra bit per
cache set, the “O” bit to indicate if that set has “overflowed”,
and another bit per cache entry, the “T” bit to indicate that the
entry holds speculative data. The linear array data structure
does provide the ability to support longer transactions but it
does not provide the fast detection capability of the current
invention. The linear array in Ananian needs to be searched
for any cache access that targets the set that “overflowed”.
This can be along process for transactions which cause many
overflows. Rajwar, Herlihy and Lai take a similar approach as
Ananian in their paper “Virtualizing Transactional Memory”.
Rajwar also uses a data cache as the primary mechanism to
track the speculative state associated with transactions.
Speculative data which is forced out of the caches is moved to
the XADT overflow area in virtual memory. The detection of
a possible conflict with an address that is part of the XADT
requires a slow linear search of the XADT. Rajwar describes
the use of filters to eliminate some of these searches but there
are many cases where the searches will still need to be done.

In addition to the above summarized developments in the
field, many software interfaces and instruction set modifica-
tions have been proposed for the support of transactional
memory. The paper “Architectural Semantics for Practical
Transactional Memory” (McDonald et al, Computer Systems
Laboratory, Stanford University, 2006—this paper listed in
our IDS is submitted herewith and is incorporated herein by
reference) compares some of the proposals and provides ref-
erences for many others and is incorporated herein by refer-
ence.

SUMMARY

The shortcomings of the prior art are overcome and addi-
tional advantages are provided through the provision of a
computing system with transactional memory using milli-
code assists. The millicoded microprocessors have millicode
that is invoked for certain cases. Memory accesses generated
by instructions within an Atomic Instruction Group (AIG)
transaction are held pending. A new instruction (e.g. “tend”)
or a buffer full indication causes the millicode to invoked to
perform load and store processing. The millicode providing
transactional memory functions including creating and
updating transaction tables, committing transactions and con-
trolling the rollback of transactions which fail. Millicode
Assist Setup Logic provides the ability to move the contents
of the Address History Table to positions in millicode regis-
ters that are well suited to fast execution using the native
hardware instructions of the microprocessor.

10

15

20

25

30

35

40

45

50

55

60

65

4

The program millicode provides assisting thread functions
including AIG mode loads causing one additional load and
two stores in which one store will miss the L1 cache and AIG
mode stores which causes two additional loads and three
stores in which one store will miss the L1 cache.

The use of hardware assists utilizing Millicode Assist
Setup Logic for simple functions and millicode for more
complex functions allows the invention to provide a balance
of speed and flexibility when implementing the complex
operations required for the support of a transactional memory
programming environment in many types of microproces-
SOIS.

Transactional memory uses a combination of a “private to
transaction” (PTRAN) tag, attached to each increment of real
system memory, and a log of speculative loads and stores to
provide an improved implementation of a transactional
memory system. The current invention uses a log with the
added mark bit employed as a “private to transaction” (PT-
RAN) tag and associated with every increment of real system
memory. Hardware is provided to quickly detect conflicts
between the storage accesses of transactions running on mul-
tiple threads of execution. The use of the tag in memory and
associated conflict detection hardware included in this inven-
tion provides a much faster transactional memory system
with much less overhead when compared to existing systems.
The complexity of the current invention is lower than prior
attempts at using additional cache coherency states for con-
flict detection, especially for systems with large numbers of
processors and associated interconnections.

The current invention uses the main memory array of the
computing system to hold the speculative data and can sup-
port very long transactions. The current invention can benefit
from the use of data caches but it does not require their use.
The current invention provides the ability to check the address
of' a new memory access without a long search process for
common cases. Likewise, it is an improvement over software
only transactional memory systems since the conflict detec-
tion and use of the tag in memory eliminates some of the
software overhead associated with tracking the speculative
state of transactions. It also provides the ability to detect
storage conflicts at a very fine level (own to a single byte) as
opposed to prior art software systems that track updates to
entire software objects which may be hundreds or thousands
of bytes. Existing software systems will either give frequent
over-indication of potential data conflicts or incur very large
software path length penalties when attempting to track the
updates to individual components of software objects.

Many software interfaces and instruction set modifications
have been proposed for the support of transactional memory.
The current invention can be used in combination with any of
them in order to provide high performance transactional
memory operations without incurring a large increase in
hardware or software complexity. The preferred embodiment
is described for the PowerPC architecture but anyone skilled
in the art could apply the same approach to any other archi-
tecture such as IBM’s zSeries, IBM’s pSeries with the P3, P4,
PS5 processors, and even IBM’s System 38 and its AS/400
which have a memory work of 65 bits could utilize the support
of'this invention, as well as other computer systems, such as
Sun Microsystems’ SPARC, Intel’s IA32 etc. Anyone skilled
in the art could extend the current invention for use with other
Application Programming Interfaces (APIs) that may be cre-
ated for other specialized versions of transactional memory
implementations.

The current invention uses a hardware bit or bits associated
with all memory locations, not just those that are currently
part of an active transaction. The current invention uses the

US 9,104,427 B2

5

added hardware bit or bits to provide much faster execution of
transactions than that which can be obtained using
Microsoft’s Pub. No. 2007/0028056. The current invention
uses an improved transaction table as a log to optimize the
memory usage and provides a system which uses less
memory than would be used by other systems like the
Microsoft proposal, yet the invention can execute applica-
tions developed for the Microsoft proposal. The current
invention provides one or more PTRAN hits for every storage
increment. There is no need in the current invention for an
indirect method of “locating” the PTRAN bit. The current
invention will provide a much faster indication of potential
conflict since the PTRAN bit is a directly addressable part of
the memory location to be marked. The current invention
does not need a Microsoft style interface, and achieves its
benefit using hardware and firmware to update and reset the
PTRAN bit. The current invention does not require applica-
tion software to be aware of the state of the PTRAN bit or bits
although one may provide a direct interface if desired. The
current invention is also optimized for a short commit pro-
cessing time. The current invention does not require the use of
a version number for each storage location.

The current invention uses a hardware bit or bits associated
with all memory locations, not just those that are currently
part of an active transaction. The current invention uses the
added hardware bit or bits to provide much faster execution of
transactions than that which can be obtained using
Microsoft’s Pub. No. 2007/0028056. The current invention
uses an improved transaction log method to optimize the
memory usage and provides a system which uses less
memory than would be used by other systems like the
Microsoft proposal. The current invention provides one or
more PTRAN bits for every storage increment. There is no
need in the current invention for an indirect method of “locat-
ing” the PTRAN bit. The current invention will provide a
much faster indication of potential conflict since the PTRAN
bit is a directly addressable part of the memory location to be
marked. The current invention does not need a Microsoft style
interface, and achieves its benefit using hardware and firm-
ware to update and reset the PTRAN bit. The current inven-
tion does not require software to be aware of the state of the
PTRAN bit or bits although one may provide a direct inter-
face if desired. The current invention is also optimized for a
short commit processing time. The current invention does not
require the use of a version number for each storage location.

We noted above the Chang and Mergen suggestions which
became an anecdote in the prior art, as Woods said “No one
seems to be looking at what they learned”. An advantage of
the current invention is that it uses a “Transaction Table” that
is distinct from the virtual memory page tables of the system.
This enables the current invention to process very large trans-
actions and to provide conflict detection down to a single
byte. The current invention has no limit on the number of
concurrent threads that can simultaneously access memory
locations in the same virtual memory segment. The current
invention performs conflict detection on physical memory
addresses (or real addresses) and only restricts simultaneous
access at the granularity of this conflict detection. This granu-
larity can differ for various implementations of the current
invention but will usually be on the order of bytes. If the
Chang and Mergen system tries to use large numbers of
concurrent threads, that system could not provide similar
benefits without using extremely large virtual page table for-
mats and consequently incurring a performance penalty. The
current invention does not impose this performance penalty.

System and computer program products for implementing
transactions using the above-summarized methods are also

10

15

20

25

30

35

40

45

50

55

60

65

6

described and claimed herein. Generally computer program
products are delivered as computer program media which are
tangible embodiments of the program delivering the instruc-
tions via a CD Rom, a computer disc drive, a connection to
another system or other tangible embodiment of a signal for
delivering a program signal to the computing system which
supplies the support of this system, all collectively known as
computer program media. The computer program media may
be provided as an independent software medium installed in
the computing system memory or installed as firmware
embodied in the computing system memory itself during
operation.

Additional features and advantages are realized through
the techniques of the present invention. Other embodiments
and aspects of the invention are described in detail herein and
are considered a part of the claimed invention. For a better
understanding of the invention with advantages and features,
refer to the description and to the drawings.

As a result of the summarized invention, technically we
have achieved a solution which enables any millicoded pro-
cessor to be used for transactional memory systems and pro-
vides a much faster transactional memory system with much
less overhead when compared to existing systems. The cur-
rent invention is also an improvement over existing hardware
based transactional memory systems that rely on changes to
cache coherence protocols. It allows the hardware system to
deal with transactions which are long enough to overflow
average size caches and doesn’t involve the virtual memory
management overhead of prior art schemes. The current
invention has a much lower level of hardware complexity and
is easier to implement and verify via simulation. It also allows
for the ability to detect conflicts at a finer granularity than the
cache line granularity of prior art systems that are tightly
coupled with data caches. The current invention also allows
for the fast execution of nested transactions.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The subject matter which is regarded as the invention is
particularly pointed out and distinctly claimed in the claims at
the conclusion of the specification. The foregoing and other
objects, features, and advantages of the invention are apparent
from the following detailed description taken in conjunction
with the accompanying drawings in which:

FIG. 1 illustrates our computing system with optimized
transactional memory using physical memory.

FIG. 2 illustrates our real system memory transaction
tables.

FIG. 3 shows our load processing flowchart.

FIG. 4 shows our store processing flowchart.

FIG. 5 shows our commit processing flowchart.

FIG. 6 shows our rollback processing flowchart.

FIG. 7 illustrates new special instructions and Atomic
Instruction Group (AIG) of instructions used in a nested
Atomic Instruction Group (AIG).

FIG. 8 shows the flow of decoding and execution of instruc-
tions in a computing system that uses the current invention.

FIG. 9 shows how the current invention uses an Address
History Table (950) that is part of a multithreaded micropro-
cessor (900) that has been designed for support of transac-
tional memory and which uses millicode for the execution of
complex instructions.

FIG. 10 illustrates more detail of the Address History Table
(1000).

US 9,104,427 B2

7

FIG. 11 illustrates in pseudo code the code for assist thread
functions.

DETAILED DESCRIPTION

The detailed description explains the preferred embodi-
ments of the invention, together with advantages and features,
by way of example with reference to the drawings.

Turning now to the drawings in greater detail, it will be
seen that in FIG. 1 there is a computing system illustrating an
embodiment of our invention which has one or more micro-
processors (100,101,102) coupled to a physical memory
array (120) via an interconnection element (110). The physi-
cal memory array stores transaction data (121) and “private to
transaction” (PTRAN) tags (122) which are associated with
every increment of real system memory. The interconnection
element (110) can be implemented as a shared bus or crossbar
switch. The invention applies to systems which use any other
scheme of interconnecting physical memory to a multipro-
cessor system which may be implemented in one or more
chips. The memory could be broken down into smaller por-
tions and distributed across private connections to each of the
CPU chips as done for the IBM Systems using the Power4
microprocessor or for the AMD Opteron based servers. The
microprocessors and memory controllers may be located
together on a single silicon chip or they may be spread across
multiple chips.

The physical memory of the computing system is divided
into n increments. One or more “private to transaction” bits
(PTRAN) associated with every increment of real system
memory are provided for each of the n increments. The inven-
tion allows for the choice of any memory increment size and
the best choice will depend on workload characteristics, hard-
ware costs and data caching structure used in the target sys-
tem. An increment of 16 bytes is used in the illustrated
embodiment. The PTRAN bit(s) are used to indicate whether
(or not) a data entry in memory is part of the speculative
memory state of an uncommitted transaction that is currently
active in the system.

Special new instructions (BEGIN_AIG, END_AIG) as
illustrated by the Nested AIG code sequence of FIG. 7 are
used to mark the beginning and end of a group of instructions.
The instructions which execute between the special new
instructions are referred to as an “Atomic Instruction Group”
(AIG) illustrated by AIG instructions shown in FIG. 7 (In-
struction A0, Instruction A1, Instruction A2). Additional stor-
age access rules are used when a processor is executing
instructions which are part of Atomic Instruction Group. All
of'the storage locations modified by the AIG group of instruc-
tions are updated in memory in an atomic fashion. The
updates to the storage locations are kept “pending” until the
processor and/or software application indicates that they
should be “committed”. All of the updates are either commit-
ted to “normal” memory at once or they are discarded. The
results are discarded when hardware and/or software detects
a conflict between the storage accesses of multiple AIGs that
are executing concurrently in the multiprocessor system. The
invention provides a way for hardware to quickly detect
potential conflicts between the storage accesses of multiple
AIGs. Although the invention uses special new instructions to
mark the boundaries of a transaction, any other method could
be used to identify a group of memory locations that are to be
updated in an atomic fashion. The invention is compatible
with any number of software interfaces that may be used to
implement a transactional memory system. The invention can
provide the same fast conflict detection for any system which
is attempting to provide an atomic update of multiple storage

10

15

20

25

30

35

40

45

50

55

60

65

8

locations. The invention also applies to systems which mark
the boundaries of an instruction group in any other ways,
including compiler generated hints attached to other instruc-
tions, internal microprocessor commands generated by inter-
nal microcode or millicode.

The PTRAN tag is one or more bits associated with an
increment in memory which is set for all memory accesses
generated by instructions that are part of an Atomic Instruc-
tion Group. A processor inspects the bit before attempting to
set it; this enables the quick detection of potential conflicts
with other AIGs that are concurrently executing on other
threads. The setting of the bit may be accomplished by a TS
“test and set” operation of the IBM z/Architecture (as
described by the IBM z/Architecture Principles of Operation)
or any other equivalent operation that enables an atomic
update in a multithreaded or multiprocessor system.

Turning now to FIG. 2, it will be seen that Transaction
Tables (230,231) are created as part of the real system
memory (220) which is illustrated here as physical memory.
The Transaction Tables could also be created in logical or
virtual memory. Any system to map the logical system
memory to the physical system memory can be used, and
there are numerous examples known in the art which can be
used, such as those in the IBM zSeries, IBM’s pSeries, Sun
Microsystems’ SPARC, Intel’s IA32 etc. A Transaction Table
entry is made when instructions that are part of an Atomic
Instruction Group cause a memory location to be inspected or
updated. A Thread ID (203,213) is associated with each
Transaction Table. A Next Entry register (202,212) is used as
an index into the Transaction Table and indicates which entry
should be written next. A Table Origin (201,211) indicates the
address of the first entry of the Transaction Table for its thread
(203, 213). The Transaction Table is used to hold additional
information beyond the simple information that is associated
with the PTRAN tag bit or bits that are associated with the
memory location that has been inspected or updated. This
additional information is related to the speculative state asso-
ciated with an Atomic Instruction Group. In an illustrated
IBM zSeries or pSeries CPU (100, 101, 102) embodiment
which we describe here we prefer to use a single PTRAN bit.
In this case the Transaction Table will contain all additional
information about the speculative state, therefore the PTRAN
bit will only indicate that a physical address is involved in an
AIG. This is illustrated for Transaction Table A (230) as the
address (240), the transaction info identifier (241) and old or
new data (242). Other embodiments of the current invention
may use additional PTRAN bits which can be used by hard-
ware or software to speed the processing of certain events
involved in the processing of Atomic Instruction Groups or
the speculative states of any other transactional memory sys-
tem. The combination of using just a single bit in memory and
associating that bit with a more complete description of the
transactional state in the Transaction Tables provides a trans-
actional memory system which requires very little hardware
overhead without incurring the performance penalty seen in
prior-art software transactional memory systems.

Turning again to FIG. 2, it will be seen as we said that an
entry in the Transaction Table, A for example (230), com-
prises the address (240) that has been inspected or updated
inside of an AIG, a Tran Info field (241) and a Data Field
(242). A store instruction that is part of an AIG will cause the
system to copy the “old” data value from the original storage
location to the Transaction Table entry for that address and the
new speculative data is placed in the main storage location.

The invention can be made to work with the new values
held in the Transaction Table if desired. The preferred
embodiment places the “old” data value in the transaction

US 9,104,427 B2

9

table. This allows the system to be optimized for the case
where most transactions are successful. The old data can be
discarded quickly when it is no longer needed, when a trans-
action is committed permanently to memory, by changing the
pointer to the transaction table or by clearing the contents of
the transaction table. The Tran Info field of a Transaction
Table entry (241) includes any transaction information that is
needed to make detailed decisions about the need to cause a
transaction failure. It also has provisions for additional infor-
mation to allow efficient support of nested transactions, vir-
tualized transactions or other extensions of the transactional
memory architecture. In the preferred embodiment, the Tran
Info field includes an indication of whether the storage access
of the associated address (240) was a load type access or a
store type access. The Tran Info field (240) can also indicate
whether the address is shared among multiple AIGs in the
system.

FIG. 3 shows a load processing flowchart for the actions for
tracking a speculative state using the PTRAN bit and the
Transaction Tables. When a processor attempts a load type
access, initially a decision (310) is made to determine
whether the load access address is part of an AIG and whether
the special storage access rules for AIG accesses apply. I[f not,
normal processing applies and a normal load processing
(320) operation is followed. Whether or not aload type access
is part of an AIG may be determined in many different ways
in the decision process step (310). A mode bit may be set in
the processor pipeline or in load/store units to indicate that a
special AIG mode of operation is active. The mode may be
part of the physical state of the processor or the logical state
of a virtual processor. If the special mode of operation is not
active then the load is treated as a normal load (320).

An “override” of this “AlG active mode” may be provided.
The override could be associated with the logical memory
segment or logical memory page which contains the target
address. An override forces the system to treat the storage
request as normal in spite of the fact that the request is part of
an AIG. If the override is active then the result of the decision
(310) will cause normal processing (320) to take place.
Assuming that an AIG is active and the override is not, then
the associated PTRAN bit is inspected at an inspection step
(330). A load instruction inside of an AIG detects upon
inspection the state of the PTRAN bit. When the PTRAN bit
is already set (330) it is due possibly to the actions of another
thread executing on the same processor or on another proces-
sor. Ifat the inspection step 330 it is found that the PTRAN bit
is not set (340) then the processor sets the PTRAN bit and
make a record of the access in the Transaction Table (230) for
the active AIG by adding to the Transaction Table at the Set
PTRAN step (340) and then the complete load can continue
(360). If the PTRAN bit is already set, the address which
caused this potential conflict is compared with the addresses
already entered in the processor’s Transaction Table. If the
PTRAN bit was set when tested at the inspection step (330) by
another load earlier in the same AIG, it is already part of the
AIG as tested and determined (350) and then the complete
load may continue (360). Each Transaction Table (230, 231)
contains the addresses for a particular AIG. Accordingly, if
the address was not already part of the AIG as tested and
determined (350) then the address for the load is not found in
the processor’s Transaction Table and then the processor
checks whether the address is enabled for sharing among
AlGs in a determination step for AIG sharing (370). If the
address is not currently enabled for sharing among multiple
AIGs the processor may signal other processors in the system
to request a “shared AIG access™ for this address during the
determination step whether sharing is allowed among AIGs

25

30

40

45

10

(370). A shared access can be granted if no other AIG in the
system has speculatively written the storage location. If the
shared access is not granted then the AIG fails (380), other-
wise (390) the load address is added to the Transaction Table
(230) and the Tran Info field (241) is updated to indicate that
the address is a load access that is shared among multiple
AIGs in the system.

The FIG. 4 Store Processing Flowchart shows the actions
for processing a store that is part of an AIG. When a processor
attempts a store type access initially a store decision (400) is
made to determine whether the access is part of an AIG and
whether the special storage access rules for AIG accesses
apply. The mode of the processor is checked in a similar
method as previously described for load accesses. If the spe-
cial mode of operation, under which the special access rules
for AIG accesses apply, is not active then the store is treated as
a normal store (440). Assuming that an AIG is active, the
associated PTRAN bit is inspected at the store process
inspection step (410). If the PTRAN bit is not already set then
the PTRAN bit is set at the store transaction step (450) and a
new entry is added to the Transaction Table (230). The “old
data” is moved to the Transaction Table entry (242), the
address is written to the new entry (240) and the Tran Info
field (241) is updated. The Tran Info field (241) is marked to
indicate that the access associated with this entry was a store
type access. The new store data is written to memory after the
setting of the PTRAN bit is completed. Ifthe inspection of the
PTRAN bit (410) indicates that the bit was already set then a
decision (420) is made based on whether the current store
address is already part of an AIG which is active on the
processor. The Transaction Table (230) for the processor is
examined, if it is determined that the address is present in the
Transaction Table then the Tran Info (241) for the entry is
checked and a decision as to shared access entry (460) is
made. If the Tran Info indicates that the entry is a load type
access entry that is shared among multiple AIGs, the transac-
tion fails (430) otherwise the Tran Info field for the associated
entry is updated to indicate a store type access and the store is
processed (470).

Turning now to the Commit Processing Flowchart of FIG.
5, it will be seen that the invention includes a set of actions
completed when the last instruction in an AIG has been pro-
cessed and the entire group is ready to be “committed” per-
manently to memory as determined initially at a test step
(500). If not, the processing continued in AIG mode (550). An
AIG is committed to memory when the processing of the
loads and stores of the AIG according to flowcharts from FIG.
3 and FIG. 4 does not result in a Transaction Failure. In the
case of AIG success then testing (500) determines the last
instruction in an AIG has been processed and the entire group
is ready to be “committed” permanently to memory. Then the
Transaction Table is examined (510,520) and each entry for
the AIG to be committed is read and its associated PTRAN bit
is reset in memory at the Transaction Table commit step (530)
determination.

A specialized hardware engine may be used to complete
the performance of this commit operation. A combination of
processor caches, multiprocessor coherency actions and the
current invention can be used to provide software with the
illusion that all of the memory updates for a single AIG occur
simultaneously even though the main memory storage arrays
are not updated simultaneously. During the commit process-
ing, the resetting of the PTRAN bits continues until the last
valid entry in the Transaction Table has been determined to be
reached (530). At this point the AIG is considered to be
committed and the performance by the engine therefore com-
pletes (540).

US 9,104,427 B2

11

Some conditions prevent the completion of an AIG. These
conditions may be detected during load processing while
executing an AIG (380) or during store processing while
executing an AIG (430). There are many other possible pro-
cessor conditions that may cause the need to abort the pro-
cessing of an AIG. These include error conditions detected in
the system as well as other conditions that would require
significant additional hardware support to enable the proces-
sor to handle them correctly. Many prior-art transactional
memory architectures include provisions for the abort of
transactions and for a subsequent retry. Prior-art software
constructs can be used together with the current invention to
eliminate the need to provide hardware to deal with all pos-
sible special cases. A simple example is the case of a timer
interrupt in the middle of processing an AIG. The interrupt
may cause the processor to spend a large amount of time
running code that is not part of the partially completed AIG.
It may not be desirable for the processor to keep the AIG
active during this time. The system can force a transaction
failure for any AIG that is currently executing when a timer
interrupt occurs. A similar approach can be used for any other
special case events occurring in the processor.

Transaction failures or forced retries are handled according
to the process of the Rollback Processing Flowchart for “roll-
back” processing shown in FIG. 6. Turning now to FIG. 6, it
will be seen that the lack of a transaction failure condition
(600) allows the processor to continue in the AIG active mode
(650). The preferred embodiment of the current invention
uses an “eager” policy with respect to detecting transaction
failures and causing transaction rollback. Also, the invention
may be used in systems that wait until the end of a transaction
to take the actions required for a rollback. The memory
updates executed as part of an Atomic Instruction Groups are
either committed to normal main storage at the same time
(FIG. 5) or they are discarded with a “rollback™ operation
(620-640).

Upon finding a transaction failure condition (600) failure
several additional steps are required (610,620). Rollback
Transaction Table processing entry steps provide that the
Transaction Table (230) for the AIG is inspected and any
“old” data (242) is written back to the main memory address
(240) indicated in the entry. The PTRAN bit for the associated
address is reset. The rollback processing (620) continues until
the last valid entry in the table has been processed (630). After
the last valid entry has been processed, the rollback is com-
plete (640). The actions taken by the processor at this point
will differ based upon various software architectures for
transactional memory. Any of transactional memory architec-
tures described in the background may be used. In some cases
the AIG will be retried from the beginning. In other cases
special software handlers will be invoked to deal with the
transaction failure. The current invention may be used with
any of these different architectures.

The current invention supports the execution of “nested”
transactions. A second AIG may be included within the scope
of'the first AIG as shown in FIG. 7. Each BEGIN_AIG special
instruction (FIG. 7) statement causes the system to create a
Transaction Table (230) and to associate the table with the
AIG. Decisions about whether or not a storage address
belongs to an AIG (350) may include the inner AIG (A) or the
combination of the inner and outer AIGs (A & B). The END-
AIG special instruction statement (FIG. 7) ends the transac-
tion sequence, but as shown, a sequence for a specific trans-
action (Transaction B) may be nested within another
sequence (Transaction A) The use of multiple Transaction
Tables (230) may be used to support many nesting architec-
tures for transactional memory. Multiple versions of the “old

10

15

20

25

30

35

40

45

50

55

60

65

12

data” may be stored in any number of Transaction Tables
(230) at any nesting depth. Prior-art transactional memory
systems that rely on data caches to hold speculative state are
unable to provide similar support for nested transactions
without adding additional state information to cache directo-
ries and adding additional complexity to the cache coherency
protocol. Nesting support on prior-art systems would impose
a large hardware complexity penalty on those designs. The
current invention can also be extended to include a combined
Transaction Table that includes entries from both the inner
AIG (Instruction B0, Instruction B1) and the outer AIG (In-
struction A0, Instruction A1, Instruction A2). This Combined
Transaction Table may be used in place of the individual
Transaction Tables or in addition to the individual Transac-
tion Tables.

There are many additional hardware features that can be
added to the invention to speed the processing of the Trans-
action Table manipulations and the setting and resetting of the
PTRAN bit(s). Since the PTRAN bit is part of the main
storage data, it can be cached in the normal data caches of the
system. The Transaction Tables are also part of main storage
and can also be cached. Additional control information can be
added to the data caches to indicate whether a specific address
has been enabled for “shared AIG access” and therefore
eliminate the need to search the Transaction Table for some
cases.

FIG. 8 shows the flow of decoding and execution of instruc-
tions in a computing system that uses the current invention.
The preferred embodiment of the invention uses a BEGI-
N_AIG instruction to indicate the beginning of an AIG and an
END_AIG instruction to indicate the end of an AIG. BEGI-
N_AIG and END_AIG are marking code in the form of
instructions representing any chosen equivalent function
instruction or other suitable method of identification of a
function marks the beginning and end of a group of instruc-
tions. These alternatives for marking code can be used. The
instructions or marks may be inserted in the code explicitly by
programmers in a high level language or added by compilers
or translators as implementations of high level locking func-
tions. The instructions or marks may be added by a library
function call or be included by a special event in a runtime
environment. The instructions or marks may be generated by
firmware, hardware or a combination of both as a response to
decoding a particular sequence of instructions or receiving a
special command to enter a new mode of execution.

The preferred embodiment identifies the beginning of an
AIG after decoding of an instruction (800). If it is determined
that a BEGIN_AIG instruction has been decoded (805) the
processor enters a new MILLICODE MODE (815) and
begins execution of millicode routines which have been writ-
ten to support transactional memory execution. While the
processor is in the MILLICODE MODE it has access to
additional hardware state registers. One such state register
indicates a new mode of execution, AIG MODE, which is
used by the processor to control whether millicode is used to
assist with the execution of other instructions associated with
the support of transactional memory. In the current invention,
MILLICODE MODE is used to execute complex instructions
that would be difficult to execute in a single pass of the
instruction pipeline of a typical Reduced Instruction Set
Computing (RISC) system. The processor enters AIG MODE
and then millicode is used to create the transaction tables that
are required for the support of transactional memory. If the
instruction to be decoded is not the beginning of an AIG then
the instruction is executed as usual (810) and processing
continues with the next instruction (800).

US 9,104,427 B2

13

Prior to entering MILLICODE MODE, the architected
state of the processor is saved in the same manner that a
traditional Program Call is handled in the IBM Z-Series
architecture. Any similar state saving mechanism may be
used on any other processor architecture. The processor may
return directly to this saved state if the AIG fails or may return
to this state after a series of other error handling routines have
been invoked. After the millicode associated with beginning a
new AIG has been executed the processor exits MILLICODE
MODE (815). The processor continues to be in AIG MODE at
this point. While in AIG MODE, decoding of instructions
continues (820). If a load or store is decoded (825) then
special handling of these loads and stores is required (840).
The processor enters MILLICODE SUBSET MODE to pre-
pare for the execution of the processing steps required to track
the transactional memory state. Entering the MILLICODE
SUBSET MODE does not require as many processor cycles
as MILLICODE MODE. The current invention uses a faster
millicode setup path in the MILLICODE SUBSET MODE in
order to minimize the time required to execute loads and
stores that are part of an AIG. Additional processor state
registers are added to enable the fast calculation of the table
addresses required to track the state of the AIG. The steps
required for the processing of a load inside of an AIG are
described in FIG. 3, those for a store inside of an AIG are
described in FIG. 4. Since the execution of loads and stores
inside of an AIG is a very common occurrence, the MILLI-
CODE SUBSET MODE is designed to provide very fast
execution for their execution. After loads and stores inan AIG
are processed the processor exits MILLICODE SUBSET
MODE and it is determined (850) whether there has been an
AIG failure as described in the descriptions of FIG. 3 and
FIG. 4. If there is a failure then special handlers are invoked
(860). The actions of the special handlers for transaction
failure may vary depending on the architecture of the system
using the invention. Many methods of dealing with transac-
tion failures have been described in the prior art, any of them
could be used for this purpose. The possible methods include
retrying the transaction from the beginning for a set number
of attempts, waiting for the condition that caused the failure to
change, calling specialized software routines to resolve con-
flicts among threads etc. These possible failure handlers may
require the rollback of the AIG which caused the failure
(860). If no failure was detected then it is determined whether
the load or store was the last instruction of the AIG (855). If
the instruction is the last instruction in the AIG then the AIG
is committed (865) by entering MILLICODE MODE and
using the process described in FIG. 5. The processor then
exits the AIG Mode and MILLICODE MODE and continues
with the next sequential instruction after the AIG (800).

The decoding of instruction other than loads and stores
inside of an AIG does not necessarily require special process-
ing (830). If the instruction is not a load or store type instruc-
tion then it is determined whether the instruction is another
BEGIN_AIG (830). Nested AIG instructions require special
handling (835). The prior art contains many different ways of
handling nested transactions. The current invention can be
used to support any of them. The nested AIG handler for the
preferred embodiment adds the instructions of the “inner”
AIG to the “outer” AIG creating a single larger AIG. Other
embodiments of the invention may provide different rules of
processing for loads and stores that are part an inner nested
transaction as well as special rules for the commitment and
failure handling of inner nested transactions. If it is deter-
mined that the instruction is not a BEGIN_AIG then the
instruction is executed (845) and it is next determined (855)
whether the instruction is the last instruction of the AIG. The

20

25

30

35

40

45

50

14

preferred embodiment uses the decoding of an END_AIG
instruction to indicate that the last instruction of an AIG has
been reached. If the last instruction of the AIG has been
reached then the processor enters MILLICODE MODE, the
AIG is committed to memory and the processor exits the AIG
MODE of operation and then exits the MILLICODE MODE
(865). If there is a failure then special handlers are invoked
(860). The actions of the special handlers for transaction
failure may vary depending on the architecture of the system
using the invention. Many methods of dealing with transac-
tion failures have been described in the prior art, any of them
could be used for this purpose. The possible methods include
retrying the transaction from the beginning for a set number
ofattempts, waiting for the condition that caused the failure to
change, calling specialized software routines to resolve con-
flicts among threads etc. These possible failure handlers may
require the rollback of the AIG which caused the failure
(860). If no failure was detected then it is determined whether
the load or store was the last instruction of the AIG (855). If
the instruction is the last instruction in the AIG then the AIG
is committed (865) using the process described in FIG. 5. The
processor then exits the AIG Mode and continues with the
next sequential instruction after the AIG (800).

The decoding of instruction other than loads and stores
inside of an AIG does not necessarily require special process-
ing (830). If the instruction is not a load or store type instruc-
tion then it is determined whether the instruction is another
BEGIN_AIG (830). Nested AIG instructions require special
handling (835). The prior art contains many different ways of
handling nested transactions. The current invention can be
used to support any of them. The nested AIG handler for the
preferred embodiment adds the instructions of the “inner”
AIG to the “outer” AIG creating a single larger AIG. Other
embodiments of the invention may provide different rules of
processing for loads and stores that are part an inner nested
transaction as well as special rules for the commitment and
failure handling of inner nested transactions. If it is deter-
mined that the instruction is not a BEGIN_AIG then the
instruction is executed (845) and it is next determined (855)
whether the instruction is the last instruction of the AIG. The
preferred embodiment uses the decoding of an END_AIG
instruction to indicate that the last instruction of an AIG has
been reached. If the last instruction of the AIG has been
reached then the AIG is committed to memory and the pro-
cessor exits the AIG MODE of operation (865).

The invention provides assist hardware that enables milli-
code to be invoked for quickly for certain cases, as illustrated
by FIG. 9.

Turning to FIG. 9, it will be seen that the current invention
uses an Address History Table (950) that is part of a multi-
threaded microprocessor (900) that has been designed for
support of transactional memory and which uses millicode
for the execution of complex instructions. The preferred
embodiment uses a microprocessor that supports simulta-
neous multithreading (SMT) but other forms of multithread-
ing such as hardware multithreading (HMT) may be used.
The microprocessor in the preferred embodiment supports 4
simultaneous threads. Entries in the AHT are written by the
load store units (910,920) over new interfaces (930,940) that
carry command, control, address and data information. Com-
mand and control information may also be written into the
AHT from the Instruction Execution Pipelines (990). The
contents of the AHT may be copied or moved to the General
Purpose Registers (960) of the microprocessor over the new
interface (980) provided for that purpose. The contents may
also be copied or moved to the Millicode Registers (917) via
the Millicode Assist Setup Logic (916) over the interfaces

US 9,104,427 B2

15

provided (980,915). The Millicode Registers are used by
millicode instructions during the execution of millicode. The
Millicode Assist Setup Logic (916) provides the ability to
move the contents of the AHT (950) to positions in the mil-
licode registers (917) that are well suited to fast execution
using the native hardware instructions of the microprocessor.
The Millicode Assist Setup Logic (916) may also shift and/or
increment the contents of the AHT to provide additional
speed of execution when running the millicode routines
required to support transactional memory. The microproces-
sor (900) also contains new state registers for indication of
when the microprocessor enters MILLICODE MODE (917)
and AIG MODE (918). These states may be set or reset using
the interfaces provided (921,922). The traditional use of the
millicode mode state register (917) as part of the control logic
of'a millicoded microprocessor is well known. The millicode
assist setup logic (916) of the current invention uses control
information from the Instruction Execution Pipelines (990)
and AHT (950), via the interfaces provided (970,980), to
anticipate when the microprocessor will enter millimode for
the execution of millicode instructions that are used to sup-
port transactional memory operations. This early indication
allows for the early setup of the millicode registers (917) and
quick execution of the required code.

The current invention uses the new AIG MODE state (918)
to limit the millicode hardware setup for loads and stores to
just the minimal requirements for the executions of loads and
stores while AIG MODE is active. Traditional millicoded
microprocessors perform a wide variety of hardware setup
steps when moving from normal execution mode to MILLI-
CODE MODE. These setup steps may require dozens of
microprocessor clock cycles in some cases. One object of the
current invention is focused on reducing this overhead for the
common case of setup for the execution of loads and stores
while the AIG MODE is active.

FIG. 10 illustrates more detail of the Address History Table
(1000). In the preferred embodiment the Address History
Table (AHT) is a hardware register file. The AHT could be
implemented as an SRAM or DRAM array or any other
suitable storage element. The AHT could also be imple-
mented outside the microprocessor core or on another chip.
The AHT could also be implemented as a software table in
main memory. The AHT contains an “Entry Type” field
(1010). A non-zero Entry Type is considered a “valid” entry.
The Entry Type may be a specialized command or an
“Address Record”. In the case of an “Address Record” entry,
the Access Type field (1020) will contain an indication of
whether the address was from a store type access or a load
type access. The “Address” field (1030) contains the real
address of the storage access. The “Thread ID” field (1040)
indicates the thread of execution that is processing an AIG
and which caused the entry in the AHT to be created. The
“Response” field (1050) is used to associate hardware
responses to AHT entries. The responses may indicate that
steps required during the processing of addresses stored in the
AHT have been completed. The response field may be just a
single bit for one response or may be multiple bits which are
used to represent multiple responses or multiple stages if a
series of responses are required.

FIG. 11 illustrates software tables built by the AIG Assist
Thread. FIG. 11 illustrates one pseudo code version of the
code that the current invention uses to manage the transaction
tables associated with an AIG. The “pseudo code” shown in
FIG. 11 is written in the style of the IBM PowerPC micro-
processor architecture but the code can be translated into code
for any other suitable microprocessor architecture. The cur-
rent invention requires the pseudo code to be translated into

10

15

20

25

30

35

40

45

50

55

60

65

16

millicode. The translation is done in advance of the runtime
and the resulting code is recorded and stored with the other
millicode used by the target system on tangible media for use
by the target system. The current invention requires millicode
for each of the transactional memory functions. These func-
tions include creating and updating the transaction tables,
committing transactions and controlling the rollback of trans-
actions which fail. All of these functions can be described in
the same manner as shown in FIG. 11 and translated into
millicode.

The PowerPC architecture uses Special Purpose Registers
(SPRs) for many purposes related to storing machine state in
a microprocessor. The Address History Table of the current
invention stores state information related to currently active
AIGs. The “pseudo code” in FIG. 11 uses the SPR naming
convention when referencing the AHT. The “pseudo code”
uses the PowerPC style of referencing General Purpose Reg-
isters, i.e. R4. The current invention uses millicode that
implements the same function using millicode registers. The
setting of the PTRAN bit or bits associated with each load and
store inside of an AIG is shown in the pseudo code example
with the terms “write the correct bit”.

The loading of registers and shifting of contents are
examples of functions that the current invention performs
using the millicode assist setup logic (916). The invention
allows these operations to be done in by specialized hardware
in parallel with the traditional millicode setup operations that
are used to move the microprocessor from the normal state to
the millicode active state. The use of hardware assists for
simple functions and millicode for more complex functions
allows the invention to provide a balance of speed and flex-
ibility when implementing the complex operations required
for the support of a transactional memory programming envi-
ronment.

The flow diagrams and code depicted herein are just
examples. There may be many variations to these diagrams or
the steps (or operations) described therein without departing
from the spirit of the invention. For instance, the steps may be
performed in a differing order, or steps may be added, deleted
ormodified. All ofthese variations are considered a part of the
claimed invention.

While the preferred embodiment to the invention has been
described, it will be understood that those skilled in the art,
both now and in the future, may make various improvements
and enhancements which fall within the scope of the claims
which follow. These claims should be construed to maintain
the proper protection for the invention first described.

What is claimed is:

1. A computing system with transactional memory, com-
prising:

a multithreaded microprocessor configured to support the
transactional memory, the microprocessor configured to
execute complex instructions using millicode by a mil-
licode mode and an atomic instruction group (AIG)
mode, the microprocessor comprising:

an address history table (AHT) coupled to load and store
units, the load and store units configured to write infor-
mation entries in the AHT, the AHT coupled to instruc-
tion execution pipelines and configured to write infor-
mation into the AHT from the instruction execution
pipelines;

millicode mode state registers and AIG state registers
coupled to the instruction execution pipelines;

general purpose registers coupled to millicode assist setup
logic, the millicode assist setup logic coupled to milli-
code registers, the general purpose registers coupled to
the AHT and configured to enable contents of the AHT to

US 9,104,427 B2

17

be copied or moved to the general purpose registers of
the microprocessor and also copied or moved to the
millicode registers by the millicode assist setup logic
over interfaces provided for the millicode registers, the
millicode registers configured to be utilized by millicode
instructions based on the millicode being executed.

2. The computer system according to claim 1 wherein the
millicode is invoked by the millicode assist setup logic to
move the contents of the AHT to positions in the millicode
registers that are configured to execute based on native hard-
ware instructions of the microprocessor.

3. The computer system according to claim 2 wherein the
millicode assist setup logic is configured to shift, increment,
or shift and increment the contents of the AHT to provide
additional speed of execution based on running the millicode
routines required to support transactional memory.

4. The computer system according to claim 2 wherein the
millicode mode state registers and atomic instruction group
(AIG) state registers are configured to indicate the micropro-
cessor entering millicode mode and AIG mode respectively,
and wherein the states are configured to be set or reset based
on the interfaces provided.

5. The computer system according to claim 1 wherein the
millicode assist setup logic is configured to anticipate the
microprocessor entering millicode mode to execute millicode
instructions used to support transactional memory opera-
tions, the millicode assist setup logic configured to use con-
trol information from the instruction execution pipeline and
the AHT to anticipate the microprocessor entering millicode
mode.

10

15

20

25

18

6. The computer system according to claim 1 wherein the
AIG mode state registers limits the millicode hardware setup
for loads and stores to minimal requirements for the execu-
tions of loads and stores based on the AIG mode being active.

7. The computer system according to claim 1 wherein the
AHT contains an entry type field for which a non-zero entry
type is considered a valid entry.

8. The computer system according to claim 7 wherein an
entry type for the entry type field may be a specialized com-
mand or an Address Record, and, based on an Address Record
entry, an access type field contains an indication of whether
the address was from a store type access or a load type access.

9. The computer system according to claim 8 wherein an
Address field contains a real address of a storage access, and
a Thread ID field indicates a thread of execution that is pro-
cessing an AIG and which caused an entry in the AHT to be
created.

10. The computer system according to claim 9 wherein a
Response field is configured to associate hardware responses
to AHT entries, and wherein the responses indicate that steps
required during the processing of addresses stored in the AHT
have been completed.

11. The computer system according to claim 10 wherein
the response field is either a single bit for one response or
multiple bits configured to represent multiple responses or
multiple stages based on a series of responses being required.

#* #* #* #* #*

